

T.C.DOĞUŞ ÜNİVERSİTESİ

ENGINEERING FACULTY

COMPUTER ENGINEERING

MP3 PLAYER-ONLY IMPLEMENTATION USING TMS320C6713 DSP KIT

PROGRAMMED WITH CODE COMPOSER STUDIO

Graduation Project

Derya SÖZEN

200431026

Prof.Dr.İ.Cem GÖKNAR

İstanbul, August 2008

T.C.DOĞUŞ ÜNİVERSİTESİ

ENGINEERING FACULTY

COMPUTER ENGINEERING

MP3 PLAYER-ONLY IMPLEMENTATION USING TMS320C6713 DSP KIT

PROGRAMMED WITH CODE COMPOSER STUDIO

Graduation Project

Derya SÖZEN

200431026

Prof.Dr.İ.Cem GÖKNAR

İstanbul, August 2008

In memories of Prof.Dr.F.Şenel BOYDAĞ

Assoc.Prof.İskender HİKMET

Res.Assis.Mustafa FİDAN

ACKNOWLEDGMENT

This project was spread to a long period of time and accomplished step by step. I started

collecting background information on MP3 and DSP topics last autumn. Then I worked on

a LabView simulation to see how it works and to understand MP3 decoding algorithm

better. For the last 2 months I worked hard on programming the real-time implementation

of an MP3 player on TI‟s TMS320C6713 DSK.

Special thanks to Prof.Dr.İ.Cem Göknar for accepting me as his project student, his belief

in me, his effort in finding me help and his appreciation of my work. I also thank to my

family and Anıl Esen for their entire support throughout this project. They always pulled

me of when I got tired especially in the last period of project submission. All the laboratory

assistants were very helpful during my days of laboratory experiments. Other thanks go to

Res.Assist.Uğur Çini and Çağrı Güvenel for their leading ideas.

İstanbul, August 2008 Derya SÖZEN

CONTENTS

Acknowledgment i

List of Figures iii

List of Tables iv

Abbreviations v

1. Introduction 1

2. Overview of Hardware and Software Tools 3

2.1 The „C6000 CPU 3

2.2 The General Purpose Registers 4

2.3 Interrupts 4

2.4 Memory Organization for the C6713 5

2.5 EDMA 6

2.6 Serial Ports 7

2.7 The C6713 8

2.8 The Audio Interface Onboard the C6713 9

2.8.1 Properties of the AIC23 Codec 10

2.8.2 Codec interface 11

2.9 The BSL 12

2.10 The CSL 13

2.11 DSP/BIOS RTA and RTDX Features 13

3. Coding C6713 15

3.1 Initialization of C6713 CPU and Codec 15

3.2 MP3 Player 20

3.3 Build, Load, Run 23

4. Conclusion 36

Bibliography 38

Appendix 40

APP-1 Special Purpose registers 40

APP-2 General purpose registers 41

APP-3 L2 Cache registers 42

 APP-4 Memory map address ranges of the C6713 43

 APP-5 McBSP0 and McBSP1 registers 44

Autobiography 45

* CD Included

LIST OF FIGURES

Figure 2.1 Functional Block Diagram of the TMS320C6713 DSK

Figure 2.2 How Interrupts Work?

Figure 2.3 C6x Peripherals

Figure 2.4 Block Diagram of the TMS320C6713 DSP Starter Kit (DSK)

Figure 2.5 Audio connection: The DSK uses two McBSPs to talk with the AIC23 codec,

one for control, Another for data

Figure 2.6 Codec Interface

Figure 2.7 Support Files

Figure 2.8 DSP/BIOS RTA

Figure 2.9 RTDX data flow

Figure 3.1 Functional blocks associated with MP3 player

Figure 3.2 Huffman information decoding block as a controller

Figure 3.3 Block diagram of requantization block

Figure 3.4 Defining Path

Figure 3.5 Running a Setup from Command Line

Figure 3.6 CCS Icons

Figure 3.7 Device Setup

Figure 3.8 USB connection

Figure 3.9 General Diagnostic Test

Figure 3.10 Advanced Diagnostic Test

Figure 3.11 Connecting Target DSK

Figure 3.12 Creating a Project

Figure 3.13 Adding Files to Project

Figure 3.14 Text Editor Screen and Project Tree

Figure 3.15 Build Options

Figure 3.16 Building Results

Figure 3.17 Loading .out

Figure 3.18 Loading Program

Figure 3.19 Running Program

Figure 3.20 Halting Program

LIST OF TABLES

Table 2.1 Memory Map for the TMS320C6713

Table 2.2 Sampling Rates

ABBREVIATIONS

3G 3
rd

 Generation

ADC Analog-to-Digital Converter

AIC Analog Interface Chip

ALU Arithmetic Logic Unit

API Application Interface

BSL Board Support Library

C6713 TMS320C6713 DSK

CCS Code Composer Studio

CD Compact Disc

CMD CoMmanD

CODEC Coder – Decoder

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CSL Chip Support Library

DAC Digital-to-Analog Converter

DIP Digital Image Processing

DRAM Dynamic Random Access Memory

DRR Data Receive Register

DSK DSP Starter Kit

DSL Digital Subscriber Line

DSP Digital Signal Processing (Processor)

DSP/BIOS Texas Instruments Real-time Operating System Kernel

DXR Data Transmit Register

EDMA Enhanced Direct Memory Access

EMIF External Memory Interface

EPROM Erasable Programmable Read-Only Memory

FFT Fast Fourier Transform

GEL General Extension Language

GPIO General Purpose I/O

GUI Graphical User Interface

HPI Host Port Interface

IER Interrupt Enable Register

IFR Interrupt Flag Register

IMDCT Inverse Modified Discrete Cosine Transform

IRAM Intelligent Random Access Memory

ISN Initial Sequence Number

ISR Interrupt Service Register

ISTP Interrupt Service Table Pointer

JTAG Joint Test Action Group

LabVIEW Laboratory Virtual Instrument Engineering Workbench

McASP Multi-Channel Audio Serial Port

McBSP Multi-Channel Binary Serial Port

MDCT Modified Discrete Cosine Transform

MIC Microphone

MP3 MPEG 1 Audio Layer 3

MPEG Moving Pictures Expert Group

NMI Non-Maskable Interrupt

PCM Pulse Code Modulation

PGIE Programmable Guidance Interface Enable

RTA Real-Time Analysis

RTDX Real-Time Data Exchange

SBSRAM Synchronous Burst Static Random Access Memory

SDRAM Synchronous Dynamic Random Access Memory

SRAM Synchronous Random Access Memory

TI Texas Instruments

VLIW Very Long Instruction Word

XDS510 USB JTAG Emulator

1. INTRODUCTION

Digital signal processing, and hence the DSPs are playing a major role in today‟s almost

every technology such as telecommunication infrastructure including 3G wireless,

cable/DSL modems, digital cameras, digital audio players and etc.

To understand the logic residing in this technology, there is an easy way such as working

on a MP3 player from beginning to the end, dealing with its all aspects included. This

gives an engineer understanding of digital signal processing and its importance. Regarding

from this point of view, I designed an MP3 player-only using C6713 and programming it

in CCS.

My sources are mostly, DSP tutorials supported by TI official web site and the books

written specifically on DSP technology.

My approach to the subject was from both software and hardware aspects. First of all, I

learned the necessary basic information on MP3 format, MP3 player, digital signal

processing and DSPs. Then, I worked on a simulation in LabVIEW and my final step was

implementing the MP3 player on C6713 by programming it in CCS in both C and

assembly languages.

Research was already done on this topic, but my aim was to explain digital signal

processing with a specific example in simple terms without oversimplifying it.

There are two basic things this project aims: Understanding digital signal processing with

digital signal processors and hands-on implementation of an MP3 player from both

software and hardware aspects.

Through this report, I gave some fundamental information about the hardware and

software properties I used and introduced all the steps I had to go through during

programming the DSP along with specific screen shots and example command lines.

Because this is mostly a software project, a CD is included in order to supply necessary

codes for the potential user. Explanation of each code resides inside the texts.

In the conclusion section, I tried to summarize the overall concept, succeeded/failed parts

and possible future progress of this project. I tried to be as simple as possible in my

explanations without oversimplifying the topic and aimed to approach the concept from a

computer engineer point of view and not an electrical or an electronic engineer point of

view.

İstanbul, August 2008 Derya SÖZEN

2. OVERVIEW OF HARDWARE AND SOFTWARE TOOLS

The purpose of this part is to introduce you to the main features of the hardware and

software tools that have been used in this project. The C6713 is a small external board that

connects to the PC through a USB port. The C6713 communicates with the analog world

through a TI AIC23 stereo codec on the DSK.

2.1 The „C6000 CPU

Members of the TMS320C67x family of DSP‟s all have essentially the same CPU which is

also called the DSP core. The CPU has VLIW architecture. The CPU always fetches eight

32-bit instructions at once and there is a 256-bit bus to the internal program memory. Each

group of eight instructions is called a fetch packet. The CPU has eight functional units that

can operate in parallel and are equally split into two halves, A and B. All eight units do not

have to be given instruction words if they are not ready. Therefore, instructions are

dispatched to the functional units as execute packets with a variable number of 32-bit

instruction words. The eight functional units include:

 Four ALU that can perform fixed and floating-point operations (.L1, .L2, .S1, .S2)

 Two ALU‟s that perform only fixed-point operations (.D1, .D2)

 Two multipliers that can perform fixed or floating-point multiplications (.M1, .M2)

Figure2.1 Functional Block Diagram of the C6713

2.2 The General Purpose Registers
1

The CPU has thirty-two 32-bit general purpose registers split equally between the A and B

sides. The CPU has a load/store architecture in which all instructions operate on registers.

The data-addressing unit .D1 and .D2 are in charge of all data transfers between the

register files and memory. The four functional units on a side can freely share the 16

registers on that side. Each side has a single data bus connected to all the registers on the

other side, so the functional units on one side can access data in the registers on the other

side. Access to a register on the same side, uses one clock cycle while access to a register

on the other side requires a read and writes cycle.

2.3 Interrupts

The „C6000 CPUs contain a vectored priority interrupt controller. The highest priority

interrupt is RESET which is connected to the hardware reset pin and cannot be masked.

The next priority interrupt is the NMI which is generally used to alert the CPU of a serious

hardware problem like a power failure. Then, there are twelve lower priority maskable

1
 Appendix 1 & Appendix 2 – Special and General Purpose Register Addresses

interrupts INT4–INT15 with INT4 having the highest and INT15 the lowest priority. These

maskable interrupts can be selected from up to 32 sources for the ‟C6000 family. The

sources vary between family members. For the C6713, they include external interrupt pins

selected by the GPIO unit, and interrupts from internal peripherals such as timers, McBSP

serial ports, McASP serial ports, EDMA channels, and the host port interface. The CPUs

have a multiplexer called the interrupt selector that allows the user to select and connect

interrupt sources to INT4 through INT15.

Figure 2.2 How Interrupts Work?

2.4 Memory Organization for the C6713

The C6713 has an L1/L2 memory architecture consisting of a 4K-byte L1P Program

Cache
2
 (direct-mapped), a 4K-byte L1D Data Cache (2-way set associative), and an L2

memory with 256K-bytes total. The L2 memory is partitioned into a 64K-byte L2 unified

cache/mapped RAM which is up to 4-way set associative, and 192K-bytes of additional L2

mapped RAM. The L1P cache has a 256-bit wide bus to the CPU so the CPU can read a

2
 Appendix 3 - L2 Cache Registers

fetch packet (eight 32-bit instructions) each cycle. The ‟C6713 DSP has a 32-bit EMIF unit

that provides a glueless interface to SDRAM, Flash, SBSRAM, SRAM, and EPROM. The

DSP has a 512 M-byte total addressable external memory space. Data is byte (8-bit), half-

word (16-bit), or word (32-bit) addressable. Table 2.1 shows the default memory map for

the TMS320C6713 DSK.

Address C67x Family Memory Type C6713 DSK

0x00000000 Internal Memory Internal Memory

0x00030000
Reserved Space or Peripheral

Register
Reserved or Peripheral

0x80000000 EMIF CE0 SDRAM

0x90000000
EMIF CE1

Flash

0x90080000 CPLD

0xA0000000 EMIF CE2
Daughter Card

0xB0000000 EMIF CE3

Table 2.1 Memory Map for the C6713
3

The memory map tells the debugger which areas of memory it can access. Memory maps

vary depending on the application. When a memory map is defined and memory mapping

is enabled, the debugger checks every memory access against the memory map. The

debugger will not attempt to access an area of memory that is protected by the memory

map. The debugger compares memory accesses against the memory map in software, not

hardware. The debugger cannot prevent your program from attempting to access

nonexistent memory.

2.5. EDMA

The C6713 has an EDMA that can transfer data between any locations in the DSP‟s 32-bit

address space independently of the CPU. The EDMA handles all data transfers between the

L2 cache/memory controller and the peripherals. These include cache servicing, non-

cacheable memory access, user-programmed data transfers, and host access. It can move

data to and from any addressable memory spaces including internal memory (L2 SRAM),

3
 Appendix 4 – Memory map address ranges of the C6713 device

peripherals, and external memory. The EDMA includes event and interrupt processing

registers, an event encoder, a parameter RAM, and address generation hardware. It has 16

independent channels and they can be assigned priorities. Data transfers can be initiated by

the CPU or events from the peripherals and some external pins. The user can select how

events are mapped to the channels. The EDMA can transfer elements that are 8-bit bytes,

16-bit halfwords, or 32-bit words.

Figure2.3 C6x Peripherals

2.6 Serial Ports

The C6713 contains two bidirectional multichannel buffered serial ports (McBSP0 and

McBSP1)
4
. The serial ports operate independently and have identical structures. They can

be set to transfer 8, 12, 16, 20, 24, or 32 bit words. The bit clocks and frame synchs can be

internal or external and the McBSP includes programmable hardware for generating shift

clocks and frame synchs.

4
 Appendix 5 - McBSP0 and McBSP1 registers

The McASP is a serial port optimized for the needs of multi-channel audio applications.

The two McASPs can support two completely independent audio zones simultaneously.

Each McASP includes a pool of 16 shift registers that may be configured to operate as

either transmit data, receive data, or GPIO.

The C6713 also has a HPI. The HPI provides a 16-bit interface to a host. The host

functions as a master and can access the entire memory map of the DSP. Accesses are

accomplished by using the EDMA.

2.7 The C6713

The C6713 is a low cost board designed to allow the user to evaluate the capabilities of the

C6713 DSP and develop C6713-based products. It demonstrates how the DSP can be

interfaced with various kinds of memories and peripherals, and illustrates power, clock,

JTAG and parallel peripheral interfaces. The board is approximately 5 inches wide and 8

inches long and is designed to sit on the desktop external to a host PC. It connects to the

host PC through a USB port or an XDS510. A simplified block diagram of the DSK is

shown in Figure 1.2.

Figure 2.4 Block Diagram of the C6713

The major DSK hardware features are:

 A C6713 DSP operating at 225 MHz.

 An AIC23 stereo codec with Line In, Line Out, MIC, and headphone stereo jacks

 16 Mbytes of synchronous DRAM (SDRAM)

 512 Kbytes of non-volatile Flash memory (256 Kbytes usable in default

configuration)

 Four user accessible LEDs and DIP switches

 Software board configuration through registers implemented in complex logic

device

 Configurable boot options

 Expansion connectors for daughter cards

 JTAG emulation through onboard JTAG emulator with USB host interface or

external

 Emulator

2.8 The Audio Interface Onboard the C6713

The C6713 uses a TI AIC23 codec. In the default configuration, the codec is connected to

the two serial ports, McBSP0 and McBSP1. McBSP0 is used as a unidirectional channel to

control the codec‟s internal configuration registers. It should be programmed to send a 16-

bit control word to the AIC23 in SPI format. The top 7 bits of the control word specify the

register to be modified and the lower 9 bits contain the register value. Once the codec is

configured, the control channel is normally idle while audio data is being transmitted.

McBSP1 is used as the bi-directional data channel for ADC input and DAC output

samples. The codec supports a variety of sample formats. For the experiments in this

course, the codec should be configured to use 16-bit samples in two‟s complement signed

format. The codec should be set to operate in master mode so it supplies the frame sync

and bit clocks at the correct sample rate to McBSP1. The preferred serial format is DSP

mode which is designed specifically to operate with the McBSP ports on TI DSPs.

The codec has a 12 MHz system clock which is the same as the frequency used in many

USB systems. The AIC23 can divide down the 12 MHz clock frequency to provide

sampling rates of 8000, 16000, 24000, 32000, 44100, 48000, and 96000 Hz.

Figure 2.5 Audio connection: The DSK uses two McBSPs to talk with the AIC23 codec,

one for control, Another for data

2.8.1 Properties of the AIC23 Codec

The C6713 supplies a 12 MHz clock to the AIC23 codec which is divided down internally

in the AIC23 to give the sampling rates shown in the table below. The codec can be set to

these sampling rates by using the function DSK6713_AIC23_setFreq(handle,freq ID) from

the BSL. This function puts the quantity “Value” into AIC23 control register 8.

Some of the AIC23 analog interface properties are:

 The ADC for the line inputs has a full-scale range of 1.0 V RMS.

 The microphone input is a high-impedance, low-capacitance input compatible with

a wide range of microphones.

Freq ID Value Frequency

DSK6713_AIC23_FREQ_8KHZ 0x06 8000 Hz

DSK6713_AIC23_FREQ_16KHZ 0x2c 16000 Hz

DSK6713_AIC23_FREQ_24KHZ 0x20 24000 Hz

DSK6713_AIC23_FREQ_32KHZ 0x0c 32000 Hz

DSK6713_AIC23_FREQ_44KHZ 0x11 44100 Hz

DSK6713_AIC23_FREQ_48KHZ 0x00 48000 Hz

DSK6713_AIC23_FREQ_96KHZ 0x0e 96000 Hz

Table 2.2 Sampling Rates

 The DAC for the line outputs has a full-scale output voltage range of 1.0 V RMS.

 The stereo headphone outputs are designed to drive 16 or 32-ohm headphones.

 The AIC23 has an analog bypass mode that directly connects the analog line inputs

to the analog line outputs.

 The AIC23 has a side tone insertion mode where the microphone input is routed to

the line and headphone outputs.

2.8.2 Codec Interface

Figure 2.6 Codec Interface

 McBSP0 connected to program AIC23‟s control registers

 McBSP1 is used to transfer data to ADC and DAC converters

 Programmable frequency: 8K, 16K, 24K, 32K, 44.1K, 48K, 96K

 24-bit converter, Digital transfer widths: 16-bits, 20-bits, 24-bits, 32-bits

2.9 The BSL

A special Board Support Library (BSL) is supplied with the C6713. The BSL provides C-

language functions for configuring and controlling all the on-board devices. The library

includes modules for general board initialization, access to the AIC23 codec, reading the

DIP switches, controlling the LED‟s, and programming and erasing the Flash memory. The

source code for this library is included in the Code Composer Studio supplied with the

DSK and it is set up automatically to use the BSL. The function for configuring the codec

in the BSL sets McBSP1 to transmit and receive 16-bit words. The codec sends 16-bit left

and right channel input samples to McBSP1 alternately and a program reading these

samples from McBSP1‟s DRR1 would have to somehow figure out which is the right and

which is the left channel sample.

I have modified the code configuration function DSK6713_AIC23_openCodec() to send

and receive data samples from the codec in DSP format using 32-bit words. The first word

transmitted by the AIC23 codec is the left channel 16-bit sample and the right channel 16-

bit sample is transmitted immediately after the left channel sample. The AIC23 generates

single frame sync at the beginning of the left channel sample. Therefore, a 32-bit word

received by McBSP1 contains the left sample in the upper 16 bits and the right sample in

the lower 16 bits. This solves the channel ambiguity problem. The reverse process takes

place when sending samples from the DSP to the codec. The user‟s program should pack

the left channel 16-bit sample in the upper 16 bits of an integer and the right channel 16-bit

sample in the lower 16 bits and then write this word to the DXR1 of McBSP1. I have

replaced the original BSL codec configuration function with my modified function and

renamed the file dsk6713bsl32.lib.

Figure 2.7 Support Files

2.10 The CSL

TI has created a CSL that contains C functions and macros for configuring and interfacing

with all the C6713 on-chip peripherals and CPU interrupt controller. This library is loaded

onto the PC when the DSK software is installed. Each peripheral is covered by an

individual API module. The CSL header files provide a complete symbolic description of

all peripheral registers and register fields. The CSL provides a graphical user interface

(GUI) that is part of the DSP/BIOS Configuration.

2.11 DSP/BIOS RTA and RTDX Features

The DSP/BIOS RTA facilities utilize the RTDX link to obtain and monitor target data in

real-time. I utilized the RTDX link to create my own customized interfaces to the DSP

target by using the RTDX API Library. Real-time data exchange (RTDX) transfers data

between a host computer and target devices without interfering with the target application.

This bi-directional communication path provides for data collection by the host as well as

host interaction with the running target application. RTDX also enables host systems to

provide data stimulation to the target application and algorithms.

Figure 2.8 DSP/BIOS RTA

Data transfer to the host occurs in real-time while the target application is running. On the

host platform, an RTDX host library operates in conjunction with Code Composer Studio

IDE. Data visualization and analysis tools communicate with RTDX through COM APIs to

obtain the target data and/or to send data to the DSP application. The host library supports

two modes of receiving data from a target application: continuous and non-continuous. In

continuous mode, the data is simply buffered by the RTDX Host Library and is not written

to a log file. Continuous mode should be used when the developer wants to continuously

obtain and display the data from a target application, and does not need to store the data in

a log file.

Figure 2.9 RTDX data flow

3. CODING C6713

3.1 Initialization of C6713 CPU and Codec
5

Before executing the code that performs our desired signal processing algorithm, the DSK

and DSP have to be initialized. This is partially taken care of when we start Code

Composer. The version of CCS supplied with the C6713 has been configured to

automatically load the GEL file, DSK6713.gel, in the directory C:\CCStudio_v3.1\cc\gel is

automatically called. It defines a memory map, creates some GEL functions for the GEL

menu, sets some CPLD registers and initializes the EMIF for the memory on the C6713.

/**/

/* Program: dskstart32.c */

/* */

/* The codec can be set to the sampling rates shown in the */

/* table below by using the function */

/* DSK6713_AIC23_setFreq(handle, freq ID) */

/* */

/* freq ID Value Frequency */

/* DSK6713_AIC23_FREQ_8KHZ, 0x06, 8000 Hz */

/* DSK6713_AIC23_FREQ_16KHZ, 0x2c, 16000 Hz */

/* DSK6713_AIC23_FREQ_24KHZ, 0x20, 24000 Hz */

/* DSK6713_AIC23_FREQ_32KHZ, 0x0c, 32000 Hz */

/* DSK6713_AIC23_FREQ_44KHZ, 0x11, 44100 Hz */

/* DSK6713_AIC23_FREQ_48KHZ, 0x00, 48000 Hz */

/* DSK6713_AIC23_FREQ_96KHZ, 0x0e, 96000 Hz */

/* */

/**/

#include <stdio.h>

#include <stdlib.h>

#include <dsk6713.h>

#include <dsk6713_aic23.h>

#include <intr.h>

#include <math.h>

/* Codec configuration settings */

/* See dsk6713_aic23.h and the TLV320AIC23 Stereo Audio CODEC Data Manual */

/* for a detailed description of the bits in each of the 10 AIC23 control */

/* registers in the following configuration structure. */

DSK6713_AIC23_Config config = { \

0x0017, /* 0 DSK6713_AIC23_LEFTINVOL Left line input channel volume */ \

0x0017, /* 1 DSK6713_AIC23_RIGHTINVOL Right line input channel volume */ \

0x00d8, /* 2 DSK6713_AIC23_LEFTHPVOL Left channel headphone volume */ \

5
 CD included

0x00d8, /* 3 DSK6713_AIC23_RIGHTHPVOL Right channel headphone volume*/

0x0011, /* 4 DSK6713_AIC23_ANAPATH Analog audio path control */ \

0x0000, /* 5 DSK6713_AIC23_DIGPATH Digital audio path control */ \

0x0000, /* 6 DSK6713_AIC23_POWERDOWN Power down control */ \

0x0043, /* 7 DSK6713_AIC23_DIGIF Digital audio interface format */ \

0x0081, /* 8 DSK6713_AIC23_SAMPLERATE Sample rate control (48 kHz) */ \

0x0001 /* 9 DSK6713_AIC23_DIGACT Digital interface activation */ \

};

void main(void){

DSK6713_AIC23_CodecHandle hCodec;

Uint32 sample_pair = 0;

/* Initialize the interrupt system */

intr_reset();

/* dsk6713_init() must be called before other BSL functions */

DSK6713_init(); /* In the BSL library */

/* Start the codec */

hCodec = DSK6713_AIC23_openCodec(0, &config);

/* Change the sampling rate to 16 kHz */

DSK6713_AIC23_setFreq(hCodec, DSK6713_AIC23_FREQ_16KHZ);

/* Read left and right channel samples from the ADC and loop them back out to the DAC.

for(;;){

while(!DSK6713_AIC23_read(hCodec, &sample_pair));

while(!DSK6713_AIC23_write(hCodec, sample_pair));

}

}

The program C:\c6713dsk\dskstart32.c can be used as a starting point for writing C6713

applications. It contains the code necessary to initialize the DSK board, initialize the

C6713 McBSPs and initialize the AIC23 codec.

The program dskstart32.c uses functions from the UMD modified DSK BSL,

C:\c6713dsk\dsk6713bsl32.lib, to continue the initialization. The file c6713dsk.hlp also

contains detailed information about the DSK hardware. The modified library, its header

files, and sources are in the directories: (CD included)

C:\c6713dsk\dsk6713bsl32\lib

C:\c6713dsk\dsk6713bsl32\include

C:\c6713dsk\dsk6713bsl32\sources

The program dskstart32.c first initializes the board support library by calling

DSK6713_init() who‟s source code is in the BSL file dsk6713.c. This initalizes the chip‟s

PLL, configures the EMIF based on the DSK version and sets the CPLD registers to a

default state.

Next dskstart32.c initializes the interrupt controller registers and installs the default

interrupt service routines by calling the function intr_reset() in the UMD added file intr.c.

This clears GIE and PGIE, disables all interrupts except RESET in IER, clears the flags in

the IFR for the the maskable interrupts INT4 - INT15, resets the interrupt multiplexers,

initializes the ISTP and sets up the Interrupt Service Routine Jump Table. The object

modules intr.obj and intr_.obj were added to BSL library so we should not include intr.c

and intr_.asm in your project. Functions included in intr.c are:

intr_reset() Reset interrupt regs to defaults

intr_init() Initialize ISTP

ints_isn() Assign ISN to CPU interrupt

intr_get_cpu_intr() Return CPU int. assigned to ISN

intr_map() Place ISN in int. mux. register

intr_hook() Hook ISR to interrupt

A set of macro functions for setting and clearing bits in the IER and IFR are available.

Next the codec is started by calling the function DSK6713_AIC23_openCodec(). This

function configures serial port McBSP0 to act as a unidirectional control channel in the SPI

mode transmitting 16-bit words, then configures the AIC23 stereo codec to operate in the

DSP mode with 16-bit data words with a sampling rate of 48 kHz and then McBSP1 is

configured to send data samples to the codec or receive data samples from the codec in the

DSP format using 32-bit words.

The first word transmitted by the AIC23 is the left channel sample. The right channel

sample is transmitted immediately after the left sample. The AIC23 generates a single

frame sync at the beginning of the left channel sample. Therefore, a 32-bit word received

by McBSP1 contains the left sample in the upper 16 bits and the right sample in the lower

16 bits. The 16-bit samples are in 2‟s complement format. Words transmitted from

McBSP1 to AIC23 must have the same format. The codec and McBSP1 are configured so

that the codec generates the frame syncs and shift clocks.

/***/

/* File dsk6713.cmd */

/* This linker command file can be used as the starting point for linking */

/* programs for the TMS320C6713 DSK. This CMD file assumes everything */

/* fits into internal RAM and is that is not true, it maps some sections to the */

/* external SDRAM. */

/***/

-c

-heap 0x1000

-stack 0x400

-lrts6700.lib

-lcsl6713.lib

MEMORY

{

 IRAM: origin = 0x0, len = 0x40000 /* 256 Kbytes */

 SDRAM: origin = 0x80000000, len = 0x1000000 /* 16 Mbytes SDRAM */

 FLASH: origin = 0x90000000, len = 0x40000 /* 256 Kbytes */

}

SECTIONS

{

 .vec: load = 0x00000000 /* Interrupt vectors included by using intr_reset() */

 .text: load = IRAM /* Executable code */

 .const: load = IRAM /* Initialized constants */

 .bss: load = IRAM /* Global and static variables */

 .data: load = IRAM /* Data from .asm programs */

 .cinit: load = IRAM /* Tables for initializing variables and constants */

 .stack: load = IRAM /* Stack for local variables */

 .far: load = IRAM /* Global and static variables declared far */

 .sysmem: load = IRAM /* Used by malloc, etc. (heap) */

 .cio: load = IRAM /* Used for C I/O functions */

 .csldata load = IRAM

 .switch load = IRAM

}

Linker command files (dsk6713.cmd) are used to define how relocatable program sections

are mapped into the physical system memory. They can also contain assembler options and

lists of object programs to be included in the output modules. Additional object modules

can also be included on the linker command line. The modules are loaded in the order in

which they appear in the command line list of .cmd and .obj files. Command files are

convenient for saving definitions and operations that will be ordinarily used when linking

programs for a particular project.

The -c line in dsk6713.cmd tells the linker to use the auto-initialization feature of C

programs. The TI C compiler builds a table containing the data required to initialize all

variables initialized in the C program. Code is included in the executable module to load

the data values in the table into the variables when the program starts. The -heap and -stack

lines allocate memory for the heap and stack. The number after these commands is the

allocated memory size in bytes. The -lrts6700.lib line tells the linker to search the C run-

time library rts6700.lib for unresolved references. This library provides the standard

functions the C compiler expects. The line -lcsl6713.lib tells the linker to search the CSL

csl6713.lib. CCS has been set to know the path to these libraries. They are almost always

used by C programs. Including these lines in the linker command file automatically

includes them in the linker search path without any further effort on our part.

The MEMORY portion of the command file is used to define the physical memory layout.

For example, the line “IRAM : origin = 0x0, len = 0x40000 “ defines the internal program

memory to be a region called IRAM which starts at byte address 0x00000000, and has a

length of 0x00040000 bytes which is 256 Kbytes.

The C compiler puts data and program code into named sections. Named sections can also

be created by the programmer in assembly source code. The SECTIONS portion of the

linker command file tells the linker how to place sections into defined memory regions.

The standard conventions are to place program instructions in the .text section, initialized

constants in the .const section, global and static variables in the .bss section, initialization

tables for variables and constants in the .cinit section, local variables in the .stack section,

and buffers for C I/O functions in the .cio section. Data from assembly programs can be

put in the .data section. C does not use the .data section.

3.2 MP3 Player
6

Figure 3.1 Functional blocks associated with MP3 player

The first block is the Synchronization block
7
. This block serves the purpose of receiving

the incoming bit stream, extracting certain information from it and passing the extracted

information to the succeeding blocks. This information consists of the Header Information,

the CRC Information, and the Side Information. The Header Information specifies the type

of the MP3 file, the bit rate used for transmission, the sampling frequency, and the nature

of the audio.

The Scale Factor Decoding block
8
 decodes the scale factors to allow the reconstruction of

the original audio signal. Scale factors are used to mask out the quantization noise during

encoding by boosting the sound frequencies that are more perceptible to human ears.

The Huffman decoding is the most critical block in the decoding process. The Huffman

Decoding block
9
 consists of two components: Huffman Information Decoding and

Huffman Decoding. Huffman Information Decoding uses the Side Information to set up

the fields for Huffman Decoding. It acts as a controller and controls the decoding process

by providing information on Huffman table selection, codeword region, and how many

frequency lines are decoded. This decoding is illustrated in Figure 2.3.

6
 CD included

7
 Appendix-1 for source code

8
 Appendix-2 for source code

9
 Appendix-3 for source code

Figure 3.2 Huffman information decoding block as a controller

The MP3 encoder incorporates a quantizer block that quantizer the frequency lines so that

they can be Huffman coded. The output of the quantizer is multiplied by the scale factors

to suppress the quantization noise. The function of the requantizer block
10

 is to combine

the outputs of the Huffman Decoder and Scale Factor Decoder blocks, generating the

original frequency lines.

Figure 3.3 Block diagram of requantization block

Huffman coding gives better results if its inputs are ordered in an increasing order or have

similar values. This is the reason the frequency lines are ordered in increasing order of

frequency during encoding as values closer in frequency have similar values. The main

10

 Appendix-4 for source code

task of the reordering block is to search for short windows to reorder the frequency lines.

The output of the requantizer, for short windows, gives 18 samples in a sub-band. These

samples are not dependent on the window used. The reordering block simply picks up the

samples and reorders them in groups of six for each window, thereby generating them as

they were before reordering.

During the encoding process, the PCM samples are filtered into subbands using bandpass

filters. However, due to the non-ideal nature of the bandpass filters, aliasing effects occur.

To minimize aliasing artifacts, windowing is done after the MDCT block. That is why

during the decoding process, an alias reduction block is used to generate the frequency

lines similar to those generated by the MDCT in the encoder. This block adds the alias

components to each frequency line to produce the original frequency lines.

The Inverse MDCT (IMDCT
11

) block is responsible for generating samples which serve as

the input to the Polyphase filter. The IMDCT takes in 18 input values and generates 36

output values per subband in each granule. The reason for generating twice as many output

values is that the IMDCT contains a 50% overlap. This means that only 18 out of 36 values

are unique, and the remaining 18 values are generated by a data copying operation.

Finally, a Polyphase filter bank is used to transform the 32 subbands, each with 18 time

samples from every granule, to 18 bands of 32 PCM samples. PCM is a standard format of

storing digital data in uncompressed format, CD audio being the prime example. PCM

samples are defined depending on the sampling frequency and bitrate. A higher sampling

frequency implies that higher frequencies are present and a higher bitrate produces a better

resolution. Generally, CD audio uses 16 bits at 44.1 kHz.

11

 Appendix-5 for source code

3.3 Build, Load, Run
12

1. Copy the directory, digfil, on CD to C:

2. Create the folder C:\c6713dsk

3. Copy the following files from the CD folder c6713dsk to C:\c6713dsk

convol1.sa, convolve.sa, dsk6713_RTDX.cmd, dskstart32.c, edma_sines.c

4. Create the folder C:\c6713dsk\dsk6713bsl32

 a. Copy the folder C:\CCStudio_v3.1\C6000\dsk6713\lib to

C:\c6713dsk\dsk6713bsl32 and then rename dsk6713bsl.lib in

C:\c6713dsk\dsk6713bsl32\lib to dsk6713bsl32.lib.

 b. Copy the folder C:\CCStudio_v3.1\C6000\dsk6713\include to

C:\c6713dsk\dsk6713bsl32

 c. Copy DSKintr.h and regs.h on CD disk in the directory

c6713dsk\dsk6713bsl32\include to C:\c6713dsk\dsk6713bsl32\include

 d. Create the folder C:\c6713dsk\dsk6713bsl32\sources

 e. Copy the files dsk6713_opencodec.c, DSKintr.c, and intvecs.asm on this disk in the

directory c6713dsk\dsk6713bsl32\sources to C:\c6713dsk\dsk6713bsl32\sources

 f. Copy the files dsk6713_opencodec.obj, DSKintr.obj, and intvecs.obj on CD in the

directory c6713dsk\dsk6713bsl32\lib to C:\c6713dsk\dsk6713bsl32\lib

5. To add the path to your path variable in Windows XP, click on "start," then "Settings,"

and then "Control Panel." Double click on the "System" icon and then on the "Advanced"

tab. Then click on "Environment Variables" near the bottom of the window. Select the

variable "Path" and click on the "Edit" tab. Add the path

C:\CCStudio_v3.1\C6000\cgtools\bin to the end of the path variable. It must be preceded

by a semi-colon (;). Then click on the "OK" tabs to accept the edited path variable.

12

 CD included

Figure 3.4 Defining Path

Open up a command prompt window and navigate to the directory

C:\c6713dsk\dsk6713bsl32\lib. Assuming you edited the path variable, run the following

command to modify the BSL: ar6x -r dsk6713bsl32.lib dsk6713_opencodec.obj

DSKintr.obj intvecs.obj

Figure 3.5 Running a Setup from Command Line

The -r option causes ar6x to replace any module in the library having the same name as

one in the list by the one in the list. If a name in the list is not found in the library, the file

in the list is added to the library. After completing all these steps, the c6713dsk directory

tree should look like:

 c6713dsk

 convol1.sa

 convolve.sa

 dsk6713_RTDX.cmd

 dskstart32.c

 edma_sines.c

 dsk6713bsl32

 include

 dsk6713.h

 dsk6713_aic23.h

 dsk6713_dip.h

 dsk6713_flash.h

 dsk6713_led.h

 DSKintr.h

 regs.h

 IO.h

lib

 dsk6713bsl32.lib

 dsk6713bsl.zip (Contains sources for original BSL library)

 DSKintr.obj

 intvecs.obj

 dsk6713_opencodec.obj

sources

 dsk6713_opencodec.c

 DSKintr.c

 intvecs.asm

 convol1.sa

 convolve.sa

 dsk6713_RTDX.cmd

 dskstart32.c

 edma_sines.c

 bootloader.c

 fft.c

 player.c

 synth_full.c

CCS on the PC is used togenerate programs for the C6713, load them into the DSP

memory, run them, and monitor program execution.

Figure 3.6 CCS Icons

C6713 DSK CCStudio v3.1 icon starts up the CCS run time machine for C6713 only. 6713

DSK Diagnostics Utility v3.1 is the test center for checking connection and testing every

main elements on board. Setup CCStudio v3.1 sets up the DSK board that will be used and

loads the necessary device drivers
13

. CCStudio 3.1 can be used as a text editor independent

of the DSK board used.

13

 Special software modules called device drivers, are used to communicate with the target. Each driver file

defines a specific target configuration.

Figure 3.7 Device Setup

When we start diagnostic test, it first checks the USB connection.

Figure 3.8 USB connection

Then we run the overall diagnostic test:

Figure 3.9 General Diagnostic Test

In Advanced tab we can check other peripherals such as LEDs, Memory, Codec and DSP.

Figure 3.10 Advanced Diagnostic Test

After starting C6713 DSK CCStudio v3.1 we have to connect target from Debug menu in

order to start a project.

Figure 3.11 Connecting Target DSK

From Project New window, I specified the project name, location, project type and

target.

Figure 3.12 Creating a Project

I created all the source files separately before creating a project. So, after creating the

project I add files from Project Add Files to Project… menu. All file types are included

in this manner and I added all source, header, linker command and library files from here.

Figure 3.13 Adding Files to Project

As can be seen, after adding the files there is still a chance of updating codes with CCS

text editor.

Figure 3.14 Text Editor Screen and Project Tree

After adding files to the project, we have to make build options before building the project

because CCS will create the .out file accordingly. From Project Build Options I entered

the following:

Compiler Basic

Target Version: 671x (-mv6710)

Generate Debug Info: Full Symbolic Debug (-g)

Opt Speed vs Size: Speed Most Critical (no ms)

 Opt Level: None

 Program Level Opt: None

Compiler Preprocessor

Include Search Path (-i): ;c:\c6713dsk\dsk6713bsl32\include

Define Symbols (-d): CHIP_6713

Preprocessing: None

Compiler Files

Asm Directory: "a directory in my workspace"

 Obj Directory: "a directory in my workspace"

Linker Basic

Output Filename (-o): MP3player.out (mostly the project name)

Map Filename (-m): MP3player.map (mostly the project name)

Autoinit Model: Run-time auto initialization

Make sure to add to the project the linker command file: c:\c6713dsk\dsk6713.cmd and the

library c:\c6713dsk\dsk6713bsl32\lib\dsk6713bsl32.lib

Figure 3.15 Build Options

After completing options, I have rebuilt the project from Project Rebuild menu and the

results were error free.

Figure 3.16 Building Results

After clear build, CCS created the .out file and I loaded this from File Load Program

menu to DSP in order to run on it.

Figure 3.17 Loading .out

Figure 3.18 Loading Program

Figure 3.19 Running Program

While running the program on DSP, I could have halted it whenever I wanted and see the

memory pointer where it stopped.

Figure 3.20 Halting Programs, Memory State When Halted

4. CONCLUSION

In this project my aim was to design an MP3 player by using C6713 high performance,

floating-point DSK and programming it using Code Composer Studio.

Sound data (.MP3) comes from AIC23 audio codec‟s line-in jack, passes through ADC and

is sent to the C6713 CPU via McBSP1 port through its internal buffer registers. After MP3

data stream is decoded in DSP it is sent back to DAC through McBSP1 port again and the

result comes out from the line-out jack of the codec. Headphone output is weaker than the

line-out output because it affects human ear directly. But still, when we connect a speaker

to the line out the output is weak if the speaker does not have any external power supply.

A CD is included with this documentation which contains the header, library and source

files. The header files for this project were downloaded from the Texas Instruments official

web site. The C source codes, except FFT and Synth_full files, were developed within the

project. FFT and Synth_full C files are ready-to-use packets easily found on internet and

need not to be programmed unless a special application is needed. To write the codes some

already developed applications were searched and found some pseudo-codes which lead

me a way [38].

The most time consuming part of the project was debugging. Code Composer Studio is

very helpful in this regard and notifies one when an error occurs. For a computer engineer,

working with different text editors gives a practical understanding of programming

environments. Especially working on a project with more than one source file was very

challenging and this difficulty was overcome with the help of “Project” and “Build”

utilities of CCS.

A prototype of an MP3 player with two manageable disadvantages was built with this

project:

i) Data is fed through audio codec‟s line-in

ii) A host memory is used

The designed MP3 player can also be used as a sound filtering device in addition. The

sound streams coming from the line-in jack of the audio codec can be directed to DSP

again with the help of McBSP and filtered with an algorithm other than MP3 decoding.

For future work, one can program the JTAG emulator, EMIF, the correct memory mapping

and connect a 16 Mbytes memory (for TMS320C6713 max. is 16 Mbytes) in order to have

a hand-held device. This necessitates up a lot of architectural and programming effort.

BIBLIOGRAPHY

BOOK SOURCES

A.Tretter, Steven, (2008), Communication System Design Using DSP Algorithms with

Laboratory Experiments for the TMS320C6713 DSK, University of Maryland

Kehtarnavaz, Nasser, (2005), Real-Time Digital Signal Processing: Based on the

TMS320C6000, UK: Elsevier, Inc.

Kehtarnavaz, Nasser, and Kim, Namjin, (2005), Digital Signal Processing System-Level

Design Using LabVIEW, UK: Elseveir, Inc. + CR-ROM including all lab files discussed

throughout the book

Mano, M.Morris, (Third Edition), Computer System Architecture, LA: Prentice-Hall

International, Inc.

Tanenbaum, Andrew S., (2006 Fifth Edition), Structured Computer Organization, NJ:

Prentice-Hall International, Inc.

Wakerly, John F., (2001 Third Edition Updated), Digital Design Principles and Practices,

LA: Prentice Hall International, Inc.

INTERNET SOURCES

http://www.ti.com

http://www.dspvillage.com

http://www.dsprelated.com

http://sourceforge.net/project/showfiles.php?group_id=196745

TUTORIAL SOURCES

Texas Instruments Tutorial, “TMS320C6713 Floating-Point Digital Signal Processor”,

(December 2001 – Revised November 2005), SPRS186L

Texas Instruments Tutorial, “TMS320 DSP Product Family Glossary”, (February 1998),

SPRU258A

Texas Instruments Tutorial, “Code Composer Studio Development Tools v3.2 Getting

Started Guide”, (March 2006), SPRU509G

Texas Instruments Tutorial, “TMS320C6000 Instruction Set Simulator Technical

Reference Manual”, (April 2007), SPRS600I

Texas Instruments Tutorial, “How to Begin Development Today With the TMS320C6713

Floating-Point DSP”, (October 2002), SPRA809A

Texas Instruments Tutorial, “TMS320C6713 Hardware Designer‟s Resource Guide”, (July

2004), SPRAA33

APPENDIX

APP-1 Special Purpose registers

APP-2 General purpose registers

A0, A1, B0, B1 and B2 used as conditional registers

A4 – A7 and B4 – B7 used for circular addressing

A0 – A9 and B0 – B9 (except B3) are temporary registers

Any of A10 – A15 and B10 – B15 used are saved and later restored before returning from

sub-routine.

A 40-bit data value can be contained across a register pair.

Similarly 64-bit values can be kept.

APP-3 L2 Cache registers

APP-4 Memory map address ranges of the C6713

APP-5 McBSP0 and McBSP1 registers

AUTOBIOGRAPHY

I was born in February 9, 1987 in Istanbul. I took my high school education in Eyuboglu

High School and enter the Computer Engineering department of Doğuş University for my

undergraduate education. My tendency in this area is through programming the brains of

embedded systems other than interface programming. I have special interest on working

computer architecture; microprocessors and microcontrollers and programming them in

Assembly. So far, I worked on Intel MCS-51 family (model 8051) and Motorola HC08

family (model GP32). I am going to have my master degree in Istanbul Technical

University, Physics Engineering Department.

